CONTROL DATA CORPORATION

NETWORK OPERATING SYSTEM (NOS)

VERSION 2.0

LEVEL 562/552

FEATURE NOTES

NUMBER 5

COPYRIGHT. CONTROL DATA CORPORATION, 1982.

SMp13031k

NOS V2 Feature Notes - 5

This is the first in the set of features notes which
apply to NOS V2. These feature notes are intended to
supplement the material available through the normal
publications available from Control Data. They are
intended as a starting point in learning what NOS V2
is all about.

The overall system concepts used in NOS V2 are not very
different from NOS V1. The user of the system will find
he has to change very little to begin using NOS V2.

The common product set is the same release level as NOS V1
level 552 except some products/capabilities are no longer
available. 1In fact, the user will find some new capabil-
ity which will make his job easier to do.

The system programmer and operations staff will find

many new things in the system. For these people the
feature notes are just beginning to document what changes
are involved. It is recommended that each site use the
copies of the new manuals as the basis for getting ready
for NOS V2. Even though the system concepts are the same,
the system programmer and operation staff should view

any local change with care. NOS V2 may already support
that capability implemented in that local modification.
NOS V2 may accept your local modification without change.
NOS V2 may have a new implmentation of an existing
capability and local modifications to be migrated will
have to be reimplemented.

Please take the time to study before moving that local
mod. Included in your materials is the FNT Reorganization
Design Note. This will be a good beginning in planning
your approach to NOS V2.

NOS V2 Feature Notes - 5 (con't)

Included in these feature notes are articles on -

NOS V2 Manuals

NOS V2 Support and NOS V1

Model 835/855 Instruction Stack
Usability Feature Notes

Default charge and automatic procedure call
Interactive CCL

IEDIT

Improved output formats of System Utilities
Family Pack Access

User Control of Submitted Jobs

NOS Global Library Set at NOS 2.0

LIBEDIT ENHANCEMENTS

A glimpse of SORT 5

TAF Features for NOS V2
Shared Mass Storage
CYBER 176/819 Support
FNT Reorganization
L-display

NOS V2 MANUALS

NOS V2 MANUALS

The following material has previously been published

in the Publications Newsletter Vol. 2 No. 1, January, 1982,
and contains an informative discussion of the NOS V2
manual situation. It is reproduced here to provide the
reader of this document convenient access to this informa-
tion.

PRODUCT SUPPORT MANUALS FOR NOS2.0

Control Data Corporation recognizes that product support manual
considerations can be a significant aspect of acquiring a new
product or migrating from one version of a product to a successor
version. Recognizing that concern, we've taken an approach for
NOS 2.0 product support manuals that attempts to protect our
customers from incurring large additional product support manual
costs, while maintaining appropriate support for NOS 1 operating
system and product set manuals during the overlap support period.

The significant product enhancements, extensions, and feature
additions to NOS that culminate in a new version, NOS 2.0, prompts
a requirement to prepare new product support manuals for the operat-
ing system. We traditionally create new manuals (with new publica-
tion numbers) for new product versions to permit readily discerning
one version from another and to separate and simplify future main-
tenance activity (e.g., new feature and corrective code releases).
With the exception of some DMS-170 manuals and the loader manual,
product set manuals for the initial release of NOS 2.0 will not
depart significantly enough from NOS 1 product set manuals to
require new manuals. So despite the fact that separate product set
manuals might promote easier maintenance, etc, for us, we intend
to carry the same product set manuals for NOS 1 forward to support
NOS 2 products.

Any feature enhancements and/or CCRs to NOS 2.0 product set members
will be documented in the manuals carried forward. Corrective code
or other activity prompting changes to the NOS 1 product set manuals
will be reflected in the same set of product set manuals carried
forward to support NOS 2.0. We will take care to distinguish between
NOS 1 and NOS 2 differences, if any. Some details follow:

e New manuals supporting the NOS 2.0 release will be distributed
to VIM sites via the AID (Automatic Initial Distribution)
mechanism (1 microfiche copy per site).

PRODUCT SUPPORT MANUALS FOR NOS 2.0 (con't)

e Customers will be required to purchase new operating system
manuals and a small subset of product set manuals if they wish
to have copies in addition to that manual set shipped with the
product(s). Upon purchase of these manuals, customers will be
given the opportunity to subscribe to the free automatic
distribution of future revisions to these manuals.

® Other than the two DMS-170 manuals identified in DMS-170
manuals and the loader manual identified in the list of new
manuals which follows, product set manuals will not, as a matter
of course, be assigned new publication numbers nor new revision
levels. In fact we do not plan to issue any special revisions to
these manuals solely to change the cover, title page, preface,
etc., to note the fact that they reflect NOS 2.0. We will do
this when the manuals require revision in normal feature and/or
corrective code release contexts.

® We will prepare an update to the Software Publications Release
History (publication number 60481000) prior to the product
release that will identify all product support manuals, by
revision levels, that will be released at the NOS 2.0 PSR level.
We will clearly identify the revision levels of product set
manuals that reflect NOS 1 unique products.

® NOS 1 manual inventories will be maintained in LDS for at least
one year after the NOS 2 release. In reality, the retention
period is usually longer before normal inventories deplete.
After the normal inventory is depleted, we can meet special
requests for manuals by providing printed or microfiche copies
at customer expense.

e For any corrective code releases to the NOS 1 system during the
one year CEMS overlap support period, we will issue formal
revision packets to the operating system manuals. Upon termina-
tion of CEMS support for NOS 1, we will issue a final update to
these manuals (if necessary) and no further revision activity to
these manuals will occur.

e During the one year overlap support period, any NOS 1 changes that
affect the product set manuals will be supported with normal change
packets to the same product set manuals that are carried forward
to serve NOS 2. Once CEMS support terminates for NOS 1, customers
will need to retain the latest revision level of each product set
manual should they eleck to remain on NOS 1.

PRODUCT SUPPORT MANUALS FOR NOS 2.0 (con't)

e Manuals not assigned new publication numbers for the NOS 2
release will continue to have revisions distributed to NOS 1
customers via the revision packet update service. Because of
difficulties in managing the database for this service, we will
not turn off the distribution of these manual updates to NOS 1
customers. Once we know a customer has migrated to NOS 2,

LDS will change the database to reflect NOS 2 manuals for that
customer. Otherwise, manuals that retain the same document
number from NOS 1 to NOS 2 will have each revision distributed
o NOS 1 customers who subscribe to the revision packet update
service. To simplify future NOS 1 to NOS 2 migration, we
suggest you retain these updates. With the eventual termination
of CEMS support for NOS 1, the automatic revision packet service
is retained for NOS 2 only.

Our manuals approach for NOS 2 is an attempt to provide documenta-
tion continuity where possible without the requirement to replace
all manuals when migrating from NOS 1 to NOS 2. Though our approach
may appear confusing at first, we trust that we haven't unduly
compromised manual availability and usability while attempting to
save our customers money.

Reference Set

For NOS Version 2 we have created a new four-volume reference set.
The manuals in this set are described in the following abstracts;
new features will be described in our April Newsletter.

NOS 2 Reference Set, Volume 1, Introduction to Interactive Usage
60459660 60 pages

This manual gives a simple introduction to the interactive use of
NOS, including logging in and out. It describes in tutorial
manner a subset of the commands that allow a beginning user to
enter, run, and correct programs and create, retrieve, and main-
tain permanent files. This manual makes extensive use of examples
and illustrations.

Reference Set (con't)

NOS 2 Reference Set, Volume 2, Guide to System Usage
60459670 80 pages

This manual describes the concepts of job processing, magnetic

tape processing, procedures, files, source file maintenance, and
file execution. Included are descriptions on how to use Xedit.
Modify and the CYBER Loader. Although many commands are described,
not all parameters for each command are shown.

This manual is oriented toward the applications or systems programmer
who is new to NOS. It is assumed that the reader understands the
material presented in Volume 1, Introduction to Interactive Usage,
and also that the reader will use Volume 3, System Commands, as a
primary resource once the material in Volume 2 is mastered.

NOS 2 Reference Set, Volume 3, System Commands
60459680 600 pages

This manual is written for the applications programmer who uses a
higher level language. The first five sections describe the structure
of the system - its hardware and software components, files, jobs,
procedures, and commands. The remaining sections describe the
specific commands the user can employ for the following tasks.

e Job control

e Creation and manipulation of files on mass storage

e Creation and manipulation of files on magnetic tape

e Debugging

e Library maintenance

The reader is assumed to understand the concepts described in the
NOS Reference Set Volumes 1 and 2.

Reference Set (con't)

NOS 2 Reference Set, Volume 4, Program Interface

60459690 400 pages

This manual is written for the COMPASS applications programmer.

The first two sections provide an overview of system macros and
requests, and communications between user programs and NOS. The
remaining sections describe the system macros with which the user
creates and manipulates mass storage and magnetic tape files,
obtains or changes job and file status, and controls job processing.

It is assumed the reader understands the concepts described in the
COMPASS Reference Manual and the NOS Reference Set Volumes 1

through 3.

The following table shows the NOS Version 1 counterparts to the NOS

Version 2 manuals.

NOS 2

NOS Version 2 Reference Set,

Volume 1,

Introduction to Interactive Usage,

Publication Number 60459660

NOS Version 2 Reference Set,

Guide to System Usage,
Publication Number 60459670

NOS Version 2 Reference Set,

System Commands
Publication Number 60459680

NOS Version 2 Reference Set,

Program Interface
Publication Number 60459690

Volume 2,

Volume 3,

Volume 4

NOS 1

Interactive Facility
Version 1 User's Guide
Publication Number 60455260

NOS Version 1 Batch User's Guide
Publication Number 60436300

NOS Version 1 Reference Manual
Volume 1, Publication Number
60435400

and

Interactive Facility
Version 1 Reference Manual
Publication Number 60455250

NOS Version 1 Reference Manual
Volume 2, Publication Number
60445300

New Manuals for NOS 2.0

Publication

Manual Title Number
NOS 2.0 Reference Set Vol. 1, Introduction to Interactive 60459660
Usage
NOS 2.0 Reference Set Vol. 2, Guide to System Usage 60459670
NOS 2.0 Reference Set Vol. 3, System Commands 60459680
NOS 2.0 Reference Set Vol. 4, Program Interface 60459690
NOS 2.0 System Maintenance Reference Manual 60459300
NOS 2.0 Operator/Analyst Handbook 60459310
NOS 2.0 Installation Handbook 60459320
NOS 2.0 System Overview 60459270
NOS 2.0 Applications Programmer's Instant 60459360
NOS 2.0 Systems Programmer's Instant 60459370
Network Terminal User's Instant 60459380
NOS 2.0 Diagnostic Index 60459390
TAF 1 Reference Manual 60459500
TAF/CRM Data Manager Reference 60459510
TAF 1 User's Guide 60459520
DMS-170 CYBER Database Control System Version 2 Data
Administration Reference Manual 60458200
DMS-170 CYBER Database Control System Version 2
Application Programming Reference Manual 60485200
Loader User's Guide 60482300

These manuals will be available in LDS on or after April 26, 1982.

NOS V2 SUPPORT AND NOS V1

-10-

NOS V2 SUPPORT AND NOS V1

As has previously been published in the VIM Newsletter,
support of some products/capabilities will no longer be
available on NOS V2. Equivalent product/capabilities

have previously been available on NOS V1 along with
conversion aids to ease the migration to the newer product/
capability. It is believed that the customer has used

this time period to upgrade to the newer product/capability
and no longer is reliant upon the older product/capability.

The following table lists the NOS V1 product/capability and the
equivalent NOS V2 product/capability:

NOS V1 NOS V2
PRODUCT/CAPABILITY PRODUCT/CAPABILITY NOTE
HARDWARE
CPU - no CEJ/MEJ or CEJ/MEJ available
CEJ/MEJ disabled and enabled
DISK - 841 N/A May use 844-2X,
- 844-4X, 885
TAPE - 65X N/A May use 66X, 67X
MULTIPLEXOR - 6671/6676 N/A May use 2550-1,
2550-100/ 2551-1, 2551-2
2551-100
SOFTWARE

COMMON PRODUCTS

ALGOL4 /ALGEDIT ALGOL5

AAM1 AAM?2

COBOL4 COBOLS

C45 - COBOL4 N/A COBOL4 not available
COBOL5 CONVERSION AID on Version 2

CDCS1 CDCS2

DDiL2 DDL3

1] =

SIFT N/A

SORT4 SORT5S CEMS termination
April, 1983

FIN4 FIN5 CEMS termination
June, 1933

COMMUNICATIONS PRCDUCTS

TELEX TAF/NAM

EI200 RBF/NAM

TAF/TS TAF/NAM

TAF DM TAF/CRM, TAF/CDCS

UPMCD N/A MODIFY AND UPDATE
BOTH ON VERSION 2

KCL CCL KCL TO BE REMOVED

AT NOS 2.1

Questions about conversion from older products/capabilities to the newer ones
with the common product set area should be addressed to User Support in Sumnyvale,
with the commumnications products to NHP Field Support in Sunnyvale and/or NOS
Field Support in Arden Hills.

-12-

CYBER 170 - 835/855 INSTRUCTION STACK

=B

MODEL 835/855 INSTRUCTION STACK

17 INTRODUCTION

Control Data is introducing the 800 series to its CYBER 170 product
line. These machines have a new hardware architecture that uses a micro
coded instruction set <to emulate CYBER 170 700 processing. This
instruction set is as identical to that used by the other models as
possible except where it would impact the performance of the machine.
It is the unexpected exceptions that can cause problems.

The purpose of this article is to describe the difference between the
instruction 1look ahead processing used on the Model 835/855 and on the
other models of the CYBER 170 line. The 700 series and the Model 825
have a two word 1look ahead stack. The Model 835 has an additional
branch look ahead. The Model 855 has a 12 instruction look ahead which
assumes a branch will be taken.

2 THE LOOK AHEAD STACK

All the models 1in the 800 series utilize an instruction look ahead
stack. The instruction look ahead stack should not be confused with the
intruction stack of a stack machine like the 6600 or Model 176. The
purpose of a look ahead stack is to minimize the delay in processing of
instructions <caused by accessing the word of memory that contains the
instructions. To avoid this delay the next few words of memory are read
into high speed registers so that they are available when the CPU needs
them. This works very efficiently until the programmer tries to do
execution time instruction modification. This is done in writing highly
optimized code in which the programmer wishes to use the same section of
code to perform two or more slightly different functions. In this case,
the code is designed to modify itself upon detecting the type of
function desired for this execution. The following program demonstrates
a very simple form of instruction modification.

IDENT STACK
ENTRY STACK

TEMP EQ END
STACK BSS 0 EXECUTION BEGINS HERE
SA1 TEMP PICK UP WORD OF INSTRUCTIONS
BX6 X1 MOVE TO QUTPUT REGISTER
SA6 MOD STORE IN NEXT WORD
MOD NO WORD OF NOPS TO ACCEPT CODE
+ ABORT ABORT PROGRAM
END ENDRUN TERMINATE NORMALLY
END STACK

sl

The above program simply takes the word of instructions assembled into

the word TEMP , stores them into the word MOD and then executes the word
MOD. The expected result 1is that the jump to the label END will be
executed and the program will terminate normally. On a machine with
instruction 1look ahead, this program will abort. The word MOD will be

read into a high speed register before the store 1is done to MOD and
therefore the word of no-ops will be executed instead of the EQ END.

An instruction look ahead stack is nothing new to CYBER machines and
most self modifying code is designed to handle it, but the Model 835 has
an additional conditional branch look ahead stack. The instruction look
ahead stack 1s a 3 word stack. If the look ahead logic detects a
conditional branch instruction it uses two additional registers as a
branch look ahead. Into these registers it reads the first two words of
memory pointed to by the conditional branch instruction. In this way,
if the branch 1is taken two words of instructions are immediately
available for execution. If the branch fails the branch 1look ahead
registers are purged wuntil another conditional branch instruction is
detected.

The Model 855 has a 12 intruction stack which will hold the next 12
instructions to be executed. When a conditional branch instruction is
detected, the look ahead code assumes that the branch will be taken.
Instead of choosing the next contiguous instructions, it chooses the
instructions pointed to by the conditional branch instruction.

The following variation on the stack example will illustrate these

situations.

IDENT STACK
ENTRY STACK

TEMP EQ END
STACK BSS 0 EXECUTION BEGINS HERE
SAT TEMP PICK UP WORD OF INSTRUCTIONS
SB2 B1 SET B2 EQUAL TO B1
BX6 X1 MOVE TO OUTPUT REGISTER
SA6 MOD STORE INTO MOD WORD
EQ B1,B2,M0D JUMP TO MODIFIED WORD
SPACE BSSZ 100 RESERVE SPACE SO STACK CLEAR
MOD NO WORD OF NOPS TO ACCEPT CODE
+ ABORT ABORT PROGRAM
END ENDRUN TERMINATE NORMALLY

END STACK

This program would result in a normal termination on all older model
CYBER 170 machines and on the new Model 825 machine because at the time
of the store, the EQ instruction and two words of zero would be in the
stack and after the jump the word at MOD would be read into the stack.
On a Model 835, however, the word at MOD and the next word would be read
into the conditional branch instruction stack before the store is done.

-15-

The no-ops and the ABORT macro would be executed and the program will
abort. On a Model 855, the instructions at MOD would be read into the
instruction look ahead stack because the look ahead 1logic 1is assuming

the branch will be taken. The instructions at SPACE are not read unless
the EQ condition is not met. In this case since B71 is equal to B2, the
words at SPACE are not read. Since this is again a look ahead

prodedure, the instructions at MOD are read before the store into MOD is
performed and again the program will abort.

It is code that modifies instructions and then conditionally jumps to
the modified 1instructions that will lead to problems when moving self
modifying code to the Model 835/855 CYBER 170s.

3 CORRECTING THE PROBLEM

CDC does not recommend that users write code that does execution time
modification. If it cannot be avoided, the procedure for writing
self-modifying code is to void or purge the stack after the code has
been stored and before executing any additional code. The only
instruction that purges the stack on all CYBER machines 1is the return
Jjump (RJ). Regardless of whether the RJ is to a location in or out of
the stack, the entire stack is purged and new instructions are read from
CM. To guarantee that either form of the STACK program above will
terminate normally on all systems, the following instructions must be
added after the SA6 instruction:

RJ *4+1 VOID THE STACK
+ BSSZ 1

This will guarantee that all subsequent instructions will be read from
CM before being executed. Some additional instructions void the stack
on specific models but CDC will only quarantee that the RJ instruction
will purge the stack on future machines.

4 ALTERNATIVES

If a program runs differently on the Model 835/855 than it did on a
previous mainframe and execution time code modification is suspected,
the 835/855 can be run with stack purging turned on. This mode
dynamically changes the micro coding of the instruction set so that not
only the RJ and JP instructions but also the conditional jump and word

store instructions purge the stack. This greatly reduces the
performance of the machine but will properly execute code written for
any model CYBER 170 machine. Stack purging can be initiated or canceled

by a command or a COMPASS macro.

-16-

The format of the command is:
MACHINE,EP=ON. - to initiate extended stack purging
MACHINE,EP=0FF. - to cancel extended stack purging
The format of the COMPASS macro is:
MODE 7,0, to initiate extended stack purging
MODE 7,0,0 to cancel extended stack purging

The command can be used to check if stack purging is really the problem.
The command can also be used as a permanent solution if the performance
of the job is not critical or if no source code is available. The macro
should be used so the switching of modes is invisible to the casual
user. If the source code is available but is so complex that recoding
is not economical, the part of the code that does the code modification
should be isolated as closely as possible. The MODE macro can be used
to turn stack purging on before the code and off after the code to
minimize the performance degradation. The MODE macro 1s a monitor
request to set a bit in the jobs exchange package. Too frequent use of
the MODE macro can cause a performance degradation of 1its own. Care
should be taken not to turn stack purging off if it was on prior to
entering the routine being modified. The GETEM (get exit mode) macro
can be wused to check the stack purge status. The GETEM macro and the
MODE macro are described in the NOS Reference Set Vol. 4 (60459690).
The GETEM macro returns the exit mode field of the exchange package
right justified in a word of memory. Bit four of this word 1is set 1if
stack purging is on and clear 1if stack purging is off. The status
should always be checked before it is changed so that it can be restored
to the value prior to the execution of this code.

5 STANDARD PRODUCTS

The current CDC standard Category I products were modified at PSR level
528 to use the RJ instruction to void the stack after any code
modification. Any programs compiled and run after level 528 should run
on a model 835/855 with stack purging off. CDC does not officially
support running old binaries on the new machine but all binaries will
probably work if stack purging is on and most should work if they were
compiled and loaded on a system at level 528 or newer.

~17-

6 CAUTIONS

Because of the problems inherent 1in execution time instruction
modification, CDC discourages use of this type of coding.

Some users may write some COMPASS programs to check out the exact
workings of the stack and <try to take advantage of some extra
instructions that seem to void the stack. This can be dangerous since
the instruction set is in micro code. This means that any future system
release could include a new set of micro code that performs differently.
CDC may find a more efficient algorithm for micro coding a certain
instruction which makes it have a different impact on the instruction
stack. Therefore, it must be stressed again that the only official and
guaranteed way to purge the stack is with the RJ instruction.

=]18=

NOS V2 USABILITY

-19-

Usability Feature Notes

NOS Version 2 is now more ''friendly''.

NOS Version 2 offers improved usability and flexibility for the end-user.
The improvements are achieved with enhancements to several existing features
and with the addition of several new features. Each feature is discussed
individually. However, some of the features used together provide increased
usability.

The three features, Default Charge and Automatic Procedure Calls, Interactive
CCL, and Global Library Set can be used together to create a friendly user
enviromment. A user logged in to the environmment need only know a user name
and password and no more of NOS command language. The user, whether engineer,
financier, manufacturer, is then able to commumicate in the language of his or
her profession.

The remaining articles grouped under usability also provide ease—of-use benefits.
IEDIT provides enhanced in-line editing capabilities. User control of submitted
jobs allows the user to track and terminate executing jobs or queued files.
Libedit enhancements to provide parameter consistency and less tedious processing.
The use of both family and private pack files within a job session has been sim-
plified and, last, under ease-of-use features, output formats have been changed
to provide better readability.

=20

NOS V2 USABILITY

DEFAULT CHARGE AND AUTOMATIC
PROCEDURE CALL

-9]-

DEFAULT CHARGE AND AUTOMATIC PROCEDURE CALL

This article covers usage for the default charge and automatic procedure call
capabilities of NOS Version 2.

The default charge capability provides a method for automatically billing a job to
a specific default charge number and project number.

The automatic procedure call capability provides a method for an optional site
defined procedure file and an optional user defined procedure file to execute prior
to user job processing (immediately following primary CHARGE processing).

To support these features the structure of the VALIDUZ file was changed. The
answerback words were redefined and the answerback capability was eliminated. This

requires conversion of VALIDUS files between NOS Version 1 and NOS Version 2
systems.

When the VALIDUS file has been converted to NOS Version 2 format, the site analyst
can update the VALIDUS file fields used by this feature as follows:

1. Assign site defined system procedure file names using the new MODVAL SP
parameter;

2. Assign user defined procedure file names using the new MODVAL UP parameter;
3. Assign default charge numbers using the MODVAL CN parameter;
4. Assign default project numbers using the MODVAL PN parameter.

The user can also assign or change the user procedure file name at any time using
the new UPROC control statement.

UPROC(FN=FILE) or UPROC(FILE)

The user can determine what the default charge number, default project number, and
user procedure file name are at any time by executing a LIMITS statement.

LIMITS
USER PROLOGUE. & ¢« v & ¢ ¢ o & o o o o o o o s o o o s o « o o« s o o o o FILE

With the default charge feature installed, the user need not enter CHARGE
information when logging into IAF. A CHARGE (*) statement will be automatically
executed during IAF login. This CHARGE statement will perform CHARGE processing
using the default charge and project numbers from the validation file. This
CHARGE(*) statement will not be automatically added to non-interactive jobs but
must be added by the user.

With the automatic procedure call feature installed, primary CHARGE processing
will execute the system procedure file and the user procedure file if they are
defined in the VALIDUS file. This procedure file execution will be charged to the
customer.

However, if both procedure types exist, an UP parameter must be specified in each

system procedure file so that the user procedure file will execute after the system
procedure control statements have executed.

-99~

The following is an example of the system procedure file using the UP parameter.
If the UP parameter has been specified on the system procedure file call, a
statement to execute the user procedure file (UP) will execute at the end of the
system procedure file.

.PROC,PROC1,UP=8S.
*

* SYSTEM PROCEDURE FILE STATEMENTS.
*

IFE, $UPS .NE.$$,END.

BEGIN, ,UP.

ENDIF, END.

The user defined procedure must be a CCL type procedure file (CYBER Control
Language). When the UP parameter on the BEGIN statement is encountered, the EPF
subroutine (Execute Procedure Files) will obtain the name of the procedure which is
to execute by accessing the VALIDUS file. The following example shows a user
procedure called ABC.

.PROC,ABC.
COMMENT. USER PROCEDURE FILE STATEMENTS.
REVERT.
The following is a dayfile resulting from execution of the above procedures.
XX .XX.XX.USER
XX .XX.XX.CHARGE,
XX .XX.XX.BEGIN, ,ABC.
XX.XX.XX. .
XX .XX.XX.COMMENT. USER PROCEDURE FILE.

XX .XX.XX. .
XX . XX .XX.REVERT.

11127

-923-

NOS V2 USABILITY

INTERACTIVE CCL PROCEDURES

-24-

INTERACTIVE CCL PROCEDURES

- - S - e -

CCL now orovides interactive orompting for oarameters, The procedure
haader has a new format to allow you to so=2cify tha raquired parameters,
parameter descriotions and the valu=s or syntax allowed for each
parameter, The interactive procedure also provides a help faciiity to
give you information about the preocadure or the raguestad paramster,
Prompting for a parameter occurs if any of the following situations
exist,

- parameter value is in error

- reaquiresd parameter is missirg

- duplicate or uynkneown parameter appears
- heip is requested

The format for the interactive procedure header iss
+ PROCsronamexIyPl%descrintions{check 1i5t)sF2.0ePnNa

An "%1% appvended to the procedure name denotes an interactive procadura,
The "description™ following the parameter is used in tha prompt message
2s in the next example,

{Procedures)
o PROCHGETFHIHFIWINDIRECT ACCESS FILFE NAMEM=(%F),
GET»F1.
REVERT,

(Caltls)
beginssgetf,?

{(Systen promotr)
PARAMETERS FOR GETF ARE F1
ENTER F1 INDIRECT ACCESS FILE MNAMZE 72

In this examples "*F" represents the check list for the parameter F1,
This tells us tne values or syntax which can be specifisd for the
paremeter, In procedure G¥TF, Fl must have a valuye that Follows File
raming corventions, The nex%t page contains a3 complete list of check
list options and several procedure header exampies,

——— 2 s

*N
*MN=value
M=

*K

*K=zyalye
%K =

*F
*F=yalye
*F=

*A
*¥Az=yalye
*¥A=
*Sn{sat)

¥*Sni{set)=valus
¥Sni{sat})s=

Char, String
Char, String=valuye

EXAMPLES?

Pescription

e za s o G e A

oarameter may be omitted
parameter=value if poarameter is omitted
parameter is nuil if parameter is omitted

parameter may be called as keyword - no
substitutinn takes oplace
parametersyvaluye if called as keyword
parzameter is nuli if catied as keyword

parameter value must be in file name format
parameter=value if specified as a file name
parameter is null if specified 3as a file npame

parameter may be anything
parameter=value no matter what is specified
parameter is nuli no matter what is specified

parameter must be an element of Yset" - n
irdicates the maximum nunher of elaments
naramefer=vajue {f set criteria is met

parameter is null if set criteria is met

parameter on cail must match string
parameter=yagiue if parameter on call matches
character string

+PROCHRPTXI,DTVTNNDAY S CATE"={*a),
CT may be specified as any value,

ePROUCHLISTH*ILLOMMADIFY LIST OPTIONS"={%#ST{ACDEIMSTW) s®*N=F(CTMHNDS),
LT may bea any mermbers of the set givensy with a maximum of
7 elements selected, If LC is omitted, "ZCTMWDS"™ is the

default,

o PRUCSUSERNDO*ISUNMUSER NUMBER"={*xK=,%F),
UN may be specified as any file rame or called by keyword,
1f specified as UN, the default is null,

o PRECHTEXTSHI»THSYSTEM TEXTu={SYSTEXT»PPTEXT,,N=NOSTEXT),
T may he specified as SYSTEXT, PPT=XT or M, If N is
specifiedsy NOSTEXT is used.

-96-

Help may b2 requested when using zan

the system, You may
parameters by using the
The HELP command
+EMDHELP terminates the heio
usage of tnese commands.,

+HELP (or

{Procedure?}

«PRUCHATTCHF=I,P1IMFILE NAME"=(%N=FILE

+HELP
*%THIS PROCEZDURE

2HELP,P1

*¥%xIF OMITTED,

xx]E SPECIFI
«ENDHELP
ATTACH, Pl.,
REVERT,

ATTACHES A

£D AS P1=FILENAYN,

{(Call:)
ATTCHE?
or
BEGINATTCHFs»»?

{Syster prompt?)

interactive procedure,
resulting from a help reauest contains
insert Information about the procedure and
+HELPsparametar)
immediately Follows the procedure header and the

informyation,

DIRECT

FILEL IS ATTACHE

The prompt
information suoplied by vou and
its

and LENDHELP commands.

The next example shows the

L,*F)l

CESS FILE

n

o
-
B

FILEMAM IS ATTACHED.

¥%¥¥THIS PROCZOURE ATTACHES A DIRECT ACCFSS FILE,
PARAMETERS FOR ATTCHF ARE 21
ENTER PY FILE MAMZ 2?2
{Your responsa:)
P1?
{(Syster orompts)
ALLOWABLE VALUZ(SY
MAY BE A FILZE NASME
PARAMETER MAY BE OMITTELD
¥¥*TF OMITTED, FILE] IS ATTACHED,

*¥xIF SPECIFIED AS Pl=FILENAM,

ENTEZR P1 FILE

NAME?

Help for a3 specific parameter may te
{(Caliz)
-3 ATTCHF,P1?

{Responses)
ALLOWABLE VALUE(S)
MAY BE A FILE NAME

PARAMETER MAY BE IGMITTED

*x%IF CMITTED,

*#xIF SPECIFIED AS Pl=FILENANM
ENTER P1 FILE NAME?

FILE1 IS ATTAC4E

FILENAM IS ATTACHED.

reaguested by entering the next cali.

D

FILENAM IS ATTACHED,

-27 -

Interactive procedures may be called from non—-interactive sources, hut
diagnostics are issued to the dayfile if there are errors in the catt,

A reauest for help from a2 non-interactive call results in the help
information being listed in the dayfile, The procedure is not executed.

Using a backsliash (\) as a separatcr befors a parameter on a procedure
header statement means that the parameters following the backslash

must he processed in 2quivalence mcie only and can not be specified
positionaliv, If the backslash is used as a separator before a keyword
on a procedure cally it means the remaining oarameters will be nrocessed
in eauivalence mode,

The next 2 pages show 3 more detailad procedure and an interactive
session using this procedure,

-98-

.....

USMORUYSER NUMBERT= (%M== JARARY s%¥K,%A),
SYSTX"SYSTEM TEXTP={xN=aNNSTEXTs%A»*K=]))
LOCTXMLOCAL TEXT"={*N=0,%A),
LOPTULIST OPTIONS"=(xST7{ACDFIMSTAY,»=%N=),
DCHMEDIT DECK™=({%A),

#JHELP

THIS PRCCEDURE IS US

OHEL?3F§‘3

SPECIFYING MFN"™ GIVES FILE ®m{pLB52",

OMITTING FN GIVES YDU FILE »0pL™,

SPECIFYING "FN=NAME"™ SIVES YOU FILE "NAME®,

oHELPSUSND

SPECIFYING "uUSKNAO"™ GIVES YJU YDUR USER NUMABER,

OMITTIMNG USNDO GIVES YOU "UN=LIBRARY™,

SPECTIFYING "USNO=STRIMGY GIVES YOL "UN=STRING®™,

+HELPHSYSTX

SPECIFYING "SYSTX"™ GIVES YCU "CS=C" ON THE MODIFY COMMAND,

OMITTING SYSTX GIVES YDU MCS=NNDSTEXT™,

SPECIFYINSG "SYSTX=STRING®™ GIVES YCU »CS5=5TRING™T,

dHELPHLLECTX

D 70 GeT C2CK LISTINGS FROM OPL.

[KE]

OMITTING LOCTX GIVES YCU "CG=0" 0ON THE MODIFY COMMAND,
SPECIFYING "LOCTX=STRINGY GIVES YOU "CG=STRING",

«HELPSLOPT

OMITTING LOPT GIVES YOU "LC=" (SYSTEM DEFAULTS ARE USED).
+HELPSDCK

DCK MAY BE SPECIFIED AS ANY DECK,.

+ENDHELP

ATTACH,CPL=FN/UN=USNDO,
MODIFYsXsZyCS=SYSTX,CG=LOCTXsCL=0UTyL3=LCPT,/*EDITHDCK
RCUTE,CUT,DC=PR,

RETURN,CPL,LGO,COMPILE,

REVERT.,

-29-

/beginslistngs,,?
THIS PROCEDUFE IS USED TO CGET DéC(LISTINGS FROM OPL,

PARAMETERS FOR LISTNG ARE FM, USNDs SYSTX, LOCTXs LJPT, DCK

EMTER FN LFM ?2 fn?
ALLCWABLE VALUEI(S)Y
FN

MAY BE A FILE NAMJ

PAFAMETEIR MAY BRE
SPECIFYING nENR
OMITTING FN GIVE
SFECIFYING "F»=ﬂ

TED

5 FILE »ORLEE2",

U FILE "OPFLY;

GIVES YOU FILE "NAME"™,

),,» w @O .;J (% ¢]
>
- tﬂ b |

ENTER FN LFN 2 fn
ENTER USND USER NUMBER ? usno?
ALLOWABLE VALUE(S)
SNO

PAFAMETER MAY BE OMITTED
ANY 1-40 CHARACTER STRING

SPECIFYING "USNI™ GIVES YOU YODUR USER NUMBER,
OMITTING USNO GIVES YOU "UN=LIBPRARY",
SPECIFYING ™USNI=STRING"™ GIVES YCU "UN=STRING",

ENTER USNMO USER NUMBER ? usno
ENTER SYSTX SYSTEM TEXT? systx?
ALLOWABLE VALUE(S)

SYSTX
PARAMETER MAY BE OMITTED
ANY 1-4C CHARACTER STRING

iT

SPECIFYING "SYSTX™ GIVES YCU "CS5=0" ON THE MODIFY COMMAND,

OMITTING SYSTX GIVES YOU "CS=NOSTEXT".
SPECIFYING "SYSTX=STRING™ GIVES YOU "CS=STRING™,

ENTER SYSTX SYSTEM TEXT? systx
ENTER LOCTX LOCAL TEXT ? loctx?
ALLONABLE VALUEL(S)
PAKAMETER MAY BEZ OMITTED
ANY 1-4C CHARACTER STRING
OFITTING LOCTX GIVES YOU "CG=0" 04 THE MODIFY COMMAND,
SPECIFYING "LOCTX=STRIKE"™ GIVES YU "Ce=STRING",

ENTER LCCTX LOCAL TEXT ? foctx=nostxt
ENTER LOPT LIST OPTIONS? lopt?

ALLOWABLE VALUE(S)

PARAMETER MAY RBE QOMITTED

ANY 1~ 7 CHARACTERS FROM THE SET ACDZIMSTY

OMITTING LGPT GIVES YNU "™LC=" (SYSTEM DEFAULTS ARE USE

ENTER LOPT LIST QOPTIONS? topt=ctmuds
ENTER DCK ECIT DECK? dek?
ALLOWARLE VALUE(S)
ANY 1-40 CHARACTER S RIMNG
CCK MAY RE SPECIFI AS ANY [ECK,

ENTER DCK EDIT DECK? msm
REVERT,

=Bl

NOS V2 USABILTIY

IEDIT/IN-LINE EDIT

-31-

TEDIT

T

ITEDIT is an extension to the existing in-tine 2diting funcltions available
under NIOS/IAF, The editing is perforamad only on tine numbered orimary
files, A {inz2 of information {including tna line numbers) may not exceed 1
charactersy but the files may he of any length, You may intermix [ommands
and IEDIT commands without explicitly entering or teaving the editor, IAF
recognizes the IEDIT commands and generates calils to the CPU program IEDIT
to process thems The following in-tina editing functions are currently
available with IAF:

AD

- fine number inserty,; replace and datete

- sequence and reseqguence a file (RESED command)
- auto mode input {ALTO comrand)

- text mode inpout (TEXT cnmmand)

- fist function {(LIST or LMH commands)

TEDIT provides the following new or revised functiors:

- WRITE
- WRITEN
- LIST or LMNH

- ALTER
- DELETE
- nye

- MDVE

- READ

The READs R=SFQ and WRITEN commands behave in a way consistent with your
current subsystem {e.qge. BASIC or FCRTRAN).,

The IEDIT commands consist -f 3 cormand verb followed by parametfers, When
specifying lines for any of the commands, an "*" may ba ysed to indicate
8B0I, ECI or bothe The tfterm "lines" signifies one or more {ine numbers/
ranges s2parated by commzas.

Example: 100»20044250532350,4.%
These commands may not be used in gcrocedure filas, The following is a
fook at the eight commands and exarples of their usage

1) WRITE Command
WRITEsFilenamsiines,/strina/

The WRITE command copias all tines within the scecifisd "{ines” which contain
"string” from the primary fite to "filenam®, If no string is given, then ail
the specified "lines™ are copiad, If no tines are spacified, every line
containing Y“string” is conied, Lire numbers are included in the data written
to “filepan™, o changes are mace to the primary fite,

cxampinesg? Pasuttss

WP TTESFILELS»2CC.30Cs/ENDY writes every line between lines 200 and
2300 that contains YENDM™ fto M“FILEIT,

WRITES,FILEL krites all of the primary file te "FILELT,

-39~

2) WRITEN Command

WRITENsfiflenamsliness/string/

The WRITEN command perfaorms the sare as the WRITE command =2xcent that the line
numbers are not written fo “fiftenang®,
Zxamples? Fagylts:
WRITENHFILELs 7COMMENT/ krites every jine from the primary fije
that ccontains MCOMMENT™ to ®FILEL" without

WRITENSFILEL1s200443C0

3) LIST and LNH Commands
LISTs»liness/string/
LISTsf=Ffitenamseydgesr

The first form of LIST lists
contain "string®, If no string
are listed, The seacond fornm
not sovecifiad, the
functions as LIST,
the future,

but
Examples:
LIST»10C0..200s/F0ORMATY/

LNH,F=FILE]
LISTyF=FILEL1,200..,3C0

4) ALTER Command

atll

fists
antire file will

fine numbers,
Writes lines 200 to 300 to
line numberse,

"EILELY™ without

specgified "lines™ which
is 3ivens then ail the sneciflied {ines
lines gqeer on "filenam®, If a,.r is
e {isted, I NH performs tha same

tines Wwithin the

ALTERsliness/stringl/strinan2/

The ALTZR command changes 2il
the snecifird "linesg™,
If the first string

specified lines,

is null,
Examples:
ALTERSICO20044300 /2774027
ALTER,/DIMENSIONZ/

ALTER»250,//G60 TG 12/

If tre second string
"stringz®

is not preferred because it will be discontinued in
Resylts:
Lists all lines from line 10C to 200
that contains "FORMATY,
Lists local fite M™FILEL"™,
Lists lines 20C to 3090 from tocatl file
HEILELY,

sccurancas of "stringl™ to "string2" wWwithin

is nully, "stringl®™ is deleted,
is aopended to the end of the

fFesults:
Changes al} occurencaes of w2w
in fine 10C and
Removes all gccurences of
in the antire file,
Adds "GO TO 13" to

to "TWaO™
line range 200 %o 3020,

POIMENSION®

lins 25C,

-39-

£) CELETE Command
DELETEsliness/strina/

The DEZLETE command deletes ail tines within the soecifiad "lines” which
contain "string™, If no string is givan, thep all the soecified lines
are deleted, If no lines are scecified every iine in the file containing
"string” is deleted,

Examplass Fasylts:
ELETEL15C 1759 /ENDY Lelotes every tine in the range from 15¢C
to 175 that contains "zhNOY,
NELETFS/S5TOPY Peletes evary line that contains "STOPY,
DELETE»100..15C5400 Cetotes tines 10C to 150 and line 402,

£y TUP Command
BU’;G.-?:n»Z

The BU® command conies the lines in the range g,,r after {ine n, Tha
inserted tines will have news fine rurhers in incramaents of 2z, starting

with n+z, [f th2 new lipe numhers overlap existing line numberss, yvou willi
be asked whether or not to continue, IFf you continuey overlapoed lines wilil
be given pew lin2 numbars in incremants of 2z until tine overliap no longer
exists, In the B3A5IC subsystemy, 2ll BASIC statements referencing lines
which have beapr given new line numters wiil be cerracted to point to the

new {ine number., The default value of n is the tast line in the file,

and default for z is 1,

Examples: Results:
DUP»200,.200,100G,51C Lines 2070 to 300 wili be duplicated
after lina 100 and numbered in ingcraments
F 1
QF 10
DUP»100444C05 95 Lines 200 to be duplicated

400 witl
at the end of the file and numberesd in
=
- &

increments of

7) MOVYE Command
MOVEsasersnsz

The MAOVE command performs the same as the DUP command except that the
copied lines 3re deleted from their original positions,

Examples: Kesults:?

MOVES200,5009150s1 Lines 203 to 500 will be inserted after
tina 120 and numbered in increments of 1.
They will be deleted from their originatl
rositiens.

MOVES 257, 1CC Line 2C5 will be moved from its current
position to after lina 10C.

-34-

8) BzAD Cemmand

[NE]

READsfilenamen,z

The KEAD command performs the same as the DI ammand except that the lines
to te inserted are taken frem "Fijlenan®™, T aw 1ings =il1 either be
resequenced if they have {ine numbers, or 4iil have line numbars added,

Examples: Resuylts:

READSFILELIS100,1C Lines from "FILE1" will be inserted aftear
tina 1C0 and numbered in increments of 10,

READ,FILEL Lines from "FILEL1"™ will be inserted at

the and of the file and numbered in
incraments of 1.

The next 2 pages show the results of modifying the file SAMPLE by using
IEDIT commands,

-35-

primary;s
PRIMARY;SA
/1list
00100 1line
00110 1line
00120 1line
00130 1line
00140 1line
/

HPDES

This is a sample file for use with iedit.
It will be modified by iedit commands.

2P0 W =3 —

write,samp1,100..110
/list,f=samp1

00100 line
00110 line
/

1 This is a sample file for use with iedit.
7 It will be modified by iedit commands.

Wwriten,samp2,100..140,/iedit/
/list,f=samp?2

line 1 This 1is a sample file for use with iedit.
line 7 It will be modified by iedit commands.
/

list,100..%,/line 7/

00110 line
/

alter,¥.. ¥,

00100
00110
/1list
00100
00110
00120
00130
00140
/

line
line

line
line
line
line
line

7 It will be modified by iedit commands.

/iedit/IEDIT/
1 This is a sample file for use with IEDIT.
7 It will be modified by IEDIT commands.

This is a sample file for use with IEDIT.
It will be modified by IEDIT commands.

Eow -

move, 120,130,110
INSERT LINES OVERLAP EXISTING LINES, AT 140.

ENTER Y TO
7y

00140
00150
/1list
00100
00110
00130
00140
00150

line
line

line
line
line
line
line

list,f=file

line 5
line 6
/

CONTINUE OR N TO STOP

3

uy

1 This 1is a sample file for use with IEDIT.
7 It will be modified by IEDIT commands.

2

3

4y

1

read,file?1,100,10
INSERT LINES OVERLAP EXISTING LINES, AT 110.

ENTER Y TO CONTINUE OR N TO STOQOP
7y

00110 line
00120 1line
00130 1line
00140 line
00150 1line
00160 1line
/1list
00100 1line
00110 1line
00120 1line
00130 1line
00140 line
00150 line
00160 line
/

It will be modified by IEDIT commands.

W~ ovuT

This is a sample file for use with IEDIT.

It will be modified by IEDIT commands.

LT U -

dup,110..130,,10
00170 line 5
00180 1line 6
00190 line 7 It will be modified by IEDIT commands.
list
00100 line
00110 line
00120 line
00130 line
00140 line
00150 1line
00160 line
00170 line
00180 1line
00190 1line
/

This is a sample file for use with IEDIT.

It will be modified by IEDIT commands.

~NOWUT EW 1OVl

It will be modified by IEDIT commands.

delete,110..130
00110 line 5
00120 1line 6
00130 1line 7 It will be modified by IEDIT commands.
/list,f=sample, ¥

00100 1line This is a sample file for use with IEDIT.
00140 1line
00150 1line
00160 line
00170 1line
00180 1line
00190 1line
/

~NITOVUT WY -

It will be modified by IEDIT commands.

-37-

NOS V2 USABILITY

IMPROVED QUTPUT FORMATS

IMPROVED OUTPUT FORMATS OF SYSTEM UTILITIES

The '"Improved Output Formats'' feature makes the information
displayed at a terminal more useable and expands some of the
capabilities. The commands affected include MCDIFY, OPLEDIT,
LIMITS, VERIFY, ENQUIRE and LIBEDIT. The areas which have
been changed include:

1. All output messages displayed on a terminal will
be limited to 72 characters.

2. The default value for the LO parameter (listing
options) will be LO=E for all terminal commands
(only errors are listed).

3. The 10 and L options will be the same in all
commands. This includes both the use of the para-
meter and its values. (Only the LIBEDIT command
has changed the useage of these two parameters).

4. The HELP command has been expanded to include all
commands which can be issued from a terminal.

5. The LIMITS command has been modified to list only
those values which are meaningful to the terminal
user.

NOS V2 USABILTIY

FAMILY PACK ACCESS

-40-

FAMILY PACK ACCESS

THIS FEATURE IS DESIGNED TO SIMPLIFY THE PROCESS OF USING
BOTH FAMILY AND PRIVATE PACH FILE RESIDENCE. IT INCLUDES:

* SuprorRT OF THE "PN=90" PARAMETER ON PERMANENT FTILE REQUESTS
(CoMMANDS AND MACROS) -~ THIS WILL ALLOW WOU TO ACCESS
FILES ON YOUR FAMILY AFTER A PACKNAM COMMAND OR MACRD HAS
BEEN EXECUTED. THE AFFECTED PF REQUESTS ARE:

ATTACH, APPEND, CATLIST, CHANGE., DEFINE, CGET, OLD, PERMIT,
PURGALL., PURGE, REPLACE, anD SAVE.

¥ R ParaMETER For THe PACKNAM STtaTzMenT
THIS FEATURE WILL ALLOMW YOU TO SPECIFY THE DEVICE TYPE
ONCE, ON THE PACKNAM coMMAND OR MACRD, AND IT WON'T BE
NECESSARY TO SPECIFY IT ON SUBSERUENT PERMANENT FILE
ACTIDNS.

EXAMPLES

FRE-R6& Ré&

PACKN;M;ABC. PACKNAM, ABC/R=DJ.

GET, FILEL/R=DJ. GET, FILEL.

PACKNAM, . ATTACH, FILEZ/PN=0.

ATTACH, FILE2. GET, FILES.

PACKNAM, ABC.
GET, FILE3/R=DJ.

NOTE: THIS FEATURE ALSO INCLUDES A CHANGE To CATLIST To

DIsSPLAY THE Ussr INDEX wWHeEN no USER coOMMAND HAS BEEN
EXECUTED (B.G., AFTER A SUI).

-4]-

NOS V2 USABILITY

USER CONTROL OVER SUBMITTED JOBS

st i

User Control Over Submitted Jobs
1.0 Qverview
The "User Control Over Submitted Jobs" feature allows you to
a) Assign a user job name to each job.

b) Determine the current status of each job.
c) Drop jobs.

d) Place jobs into the new "WAIT" queue.
e) Retrieve jobs from queues.
f) Detach the terminal from the running job.
g) Connect the terminal to a recoverable job.
h) Control execution of a job.
These capabilities are included in the following commands:
New commands:
SETJOB, QGET, DROP, CFO, GO, PAUSE and Detach(CTRL/D).

Changed commands:

ROUTE, ENQUIRE, ONSW, OFFSW and RECOVER.

2.0 User Defined Job Name

You can assign a 1-7 character user job name (UJN) to each job

you own. This name can be used throughout the 1life of the job
for Jjob identification. You can assign the user job name in
two ways:

1) For the running Jjob (see section 7.0):
SETJOB,UJN=ujn.
2) For a job being routed to a queue:
ROUTE,1fn,DC=dc,UJN=ujn.
The user job name can be used to enquire about the
status of a job through the use of the ENQUIRE command (see

section 4.0).

The default user job name assigned to each job depends on the
jobs origin:

Batch jobs
Interactive jobs

First parameter of the job command.
4 character user hash code.

-43-

3.0 Use of the WAIT queue

User owned Jjobs can be placed into a new "WAIT" queue to be held
for future access. This can be accomplished by use of the DC=q
parameter in the ROUTE and SETJOB commands. The SETJOB

command parameters are described in section 7.0. The new

values for the g parameter in the ROUTE command are:

TO = put job in input queue - output goes to wait queue
TT = put Jjob in wait queue
NO = put Jjob in input queue - output is thrown away

e
DF

put job in input queue - output depends on the job's
origin type

4.0 Determining Job Status

The ENQUIRE command has been enhanced to allow you to
display more status about your jobs and to better select
which jobs to display. The new forms of the ENQUIRE command are:

ENQUIRE, JSN. Returns the general status about all jobs
and output files that are owned by you.

ENQUIRE,JSN=jsn. Returns detailed status about the job
b _ . s
with a job sequence name of Jsn.

ENQUIRE,UJN. Returns the JSN, UJN and the latest
control point message for all jobs and
output files which are active owned
by you.

ENQUIRE,UJN=ujn. Returns the JSN, UJN and the latest
control point message for all jobs which
have a user Jjob name of ujn.

(Note: The JN parameter is no longer available
with the ENQUIRE command.)

sl

5.0 Dropping Jobs

The DROP command allows you to drop executing jobs and
queued Jjobs. Only jobs which belong to you can

be dropped by the DROP command. The DROP command will not
drop the job from which it is issued. The formats for the
DROP command are:

DROP, jsn,q,ujn.
DROP,JSN=jsn,DC=q,UJN=ujn.

jsn = The job sequence name of the job to be
dropped.

ujn = The user job name of the jobs to be dropped.

q = The queue of the jobs to be dropped. (Must
be specified if neither jsn nor ujn specified)
PR = print
PU = punch
PL = plotter
IN = input
EX = executing (default)
TT = wait
ALL = all queued jobs

6.0 Retrieving Job Output
The new QGET command allows you to assign files from any
output queue as local files to your job. The formats for
the QGET command are:

QGET, jsn,q,ujn,1fn.

QGET, JSN=jsn,DC=q,UJN=ujn,FN=1fn.

jsn = The Jjob seqguence name of the queued

file.
q = The queue in which the file is queued.
PR = prinkt
PU = punch
PL = plot
TT = wait (default)

ujn = The user job name of the queued job.

1fn

The name assigned to the attached file
(If 1fn is not specified the file name
will be the value of ujn (or jsn if ujn
is also unspecified)).

Either the JSN or the UJN parameter (or both) must be specified.

-45~

7.0 Detaching Jobs

Detaching a job is a new capability which is available
only to IAF users. You may detach your job

at any time. After detaching a job the terminal will be
assigned to a new job (new JSN) and will go through the
recovery dialogue.

The detached job may continue to execute.
Control over the detached job may be regained through the use
of the RECOVER command (See section 8.0).

Before detaching the job you can use the SETJOB command

to change the control parameters for the job. These parameters
will take effect at the time of the detach. The format of

the SETJOB command is:

SETJOB,UJN=ujn,DC=q,0P=op.

ujn = The user Jjob name assigned to the job.
de = The disposition code assigned to the job.
TO = queue job output to wait queue
NO =z do not gqueue the output
DF = Default (output disposition depends
on the job's origin type)
(The initial value for g is DF).
op = The job processing option (takes effect

when the job terminates).

(2]
=
i

Suspend the Jjob for an installation defined
period of time after all Jjob steps have
completed.

TJ = Terminate the job after all job steps have
completed.

(The initial value for op is SU).
The actual detaching of the job takes place when the Detach
command (Control D) is issued from the terminal. Any commands

which are entered following the Detach command will apply to
the new terminal job and not the detached job.

..

8.0 Recovering Jobs
The RECOVER command can be used (by interactive users only) to
recover detached jobs which belong to you. The formats
of the RECOVER command are:
RECOVER.
RECOVER, jsn,T.

RECOVER,JSN=jsn,0P=T.

Jsn = The job sequence name of the job to be
recovered.
T = Terminate recovery processing if no

recoverable jobs (if there are recoverable
jobs the system will inform you).

If the JSN value is not specified (first format) then a list of
recoverable jobs will be displayed and the JSN value requested by
the system.

9.0 Controlling Jobs
9.1 Sending Data to an Executing Job

The new CFO command allows you to send data to an

executing Jjob. The data is placed into location RA+70B
through RA+74B of the program's field length. The CFQO flag,
(bit 14 of RA) can be used by the program to indicate when
it will accept data from the CFO command. The CFO command
clears the PAUSE flag after the data is placed into

the program's field length (see section 9.2).

The format of the CFO command is:
CFO, jsn.data

jsn = The job sequence name of the job
to receive the data.

data The data for the job (up to 36 char).

-47-

9.2 Control Over an Executing Job

The PAUSE command can be used to suspend execution of a job.
Only Jjobs that belong to you may be suspended by this
command. The PAUSE command has the following format:

PAUSE, jsn.

Jjsn = The job sequence name of the job to be
suspended.

The GO command can be used to continue a job which has been
suspended due to an error, a request for input or a PAUSE
command being issued. Only jobs that belong to you may

be continued by this command. The format for the GO command
is:
GO, jsn.
jsn = The job sequence name of the job to be
continued.

9.3 Sense Switch Control
The ONSW and OFFSW commands can be used to turn on and off
sense switches for any Jobs which belong to you. The
format for the ONSW and OFFSW commands are:
ONSW,switchl,switch2,....... switchn, jsn.
QFFEW ,switechl,8switeh2s e a s switchn, jsn.

switch = Sense switch ordinal (0-6)

Jjsn = The Job sequence name of the job which
the sense switch is associated with.

-48-

NOS V2 USABILITY

GLOBAL LIBRARY SET

wd O

(o

ne

1
ok

L2

—t
0o

«

39

@

pro

[

t on

oin
exe

19
+

§¥]

%

v

b

ed

4
9

execu!

cCcmmze

T

(8]

)

@]
4]
!

48}

©
Q

=

D @

o4
O

o

=

mne.

=] =

n:

1))
&)

Q
45
—
i
O
2]
N ®)
[4¥]

lay
adure

ar]
el
A

ov
ro

¥y
02
o

O

n

[
Q
O
S
Q.
|
i
ot
)
)

©

|78}
—

"

j&H

Q

©

!
)

more file

cifies one or

not
spe
of

are

A

~

grams

~

pro
RY comman

i

and

115 comm

T

o

rlobal librar

o
=

v
ot

©

1),...11b

e

[N

Y.

O
[
st}

48

S
Q
199

(4]
-

Bt

- fal a1
local fil

1

a

user

<

il

The

S
library set.

o

>

«
P

et

ied

Gy

Q
jan
1]

@

£

4

@
4
(&)
-
[¢}]
[

[

or

(e
(13)

i

vl

32

(&}

s,

@ -

P

Q
o)

o
&)
o

1e command.

S

4

on

ecified

o

4

%3]

=
@O
vl

S

©
0

.|

¢}
L
O

i

v
O

©
e

comr

«

.o

un

il
S

a

D

£

0

o

L
]
[43]

o)
(§4

£
-

i
[4V]

0
O

4
i)

©
O

i

<
ore
vl
[5]
i 3D
LW
[SS RS
S >
L
o
—i
[¢}]
o 5
o) @
Vi
=
G Q)
O »
[&V]
O
[ORES]
ol
|G
o 3
T
S5
43
G
> erd
0
w0
S el
ot
Gy 4.2
o (1
o
(Ol
(@3
%]
v T
wt X
G}
e
(O
™ O
. O
o
>
L1
QO <
[S e
[s &
Q F
v
(SR G}
£ L
]
.
o

e

ries,

multiple libra

[
£

Ko

(84

AD

!

TR N
L DLy

T
{
o

W

is

by
81

™
L

having

oy

73]

59}

U =
4
Q.3
£ 0
O
U
(<]

=
. O
O ™
G

1431
o
m -~
Q© v
[l

O
e
Sl 32
[
L4
L ord
o E
4 ot

—
=
L1l n
=
2 e
>
2

v}
I

K
[99]
(451

@
O 3
= o
(G o
v o
o O
Ko)]
)

%
19

want

you

which

m

r

satisfy external

vl

Q@ 0
vy Q
(IR /)]
[OBN O
. @
[O 2
<0
o o
o4
[P
£ 0
e
32 ©
()]
199]
O O
[ORRE)
i
[}
42
140
et
L 0
a0,
40
a Vv
(G
O
= o
(O]
L
Gy
o]
%
O 5.
Lo
4+ 0O
| -
(O]
ko)
o
0 4
o
o w
Q «©
>
Ty
r—
30w
O S
Kwli]
[P
or
78]
- £
O O
O
6y

& T
{ Q@
KR

@
oot
w O
e 0
2 Ui
a0
Bl M
O 0w
42 e
3
T ™
=
v (@
SOF
o8}

e |

©
LY
©
o
+> O
m
[
(@
ot G
4
= wn
O
s

48]
vo @
e
s
L (@
o O
(O e
S et
[@ares]

cry Points

are.

ries

br

i

obal 1

1
o€

g

for

honored

are

h

ic

wh

t8

=

progr

for the

0

T3

%]

50

e
S
«

(¢

-~
Do

orm
entry poin

luct set [
this

KON /5]

-5I-

y
3

1

-~
<

br

.i

&

W

Global L

3

15PN

ES 3 [I QI] P . P)
. O i £ ord oz [} S
3] (< ol < — <
. W e 40 [So /3] [
@ 4 1] SO RS 84} G .
~ oo O ol ~ QO QO >
=2 o I] a n C g ©
< 42 78] o] i o B R
(] 44} O @ i z © i &
Q. [SERO NG} [GR £ @ @] —~ @ [}
-y @ (SN e] Kupn o O} & i L. 0 >
N Q) 43 ES) s = i w0 .o
O [P n O < &£ o] @] > 0« [
N3 [e SSNB I oo} Q © Gy O —t O
[SN I ge 1] o oo = . 7o S L o
rd oW uo Il)] QY 0 (o -t s et O - e
™14 (0 o 3 e 2 ES] fri @ G e | %]
@ o Il S o w1 N A OB O e 14
D =© o~ Q B = - G
-~Q . €3 el v C o z, < = e [¢}]
Q0 e (Ol 0L e 4. i @] ~ kL 60
i ots} Gy o = &) O G O\ jo3 s Raps) o
OO wv) 1 [SiR2 B e] o > © m . o o
G U o & eS| < (G . < v . [¢)) el 5 K O . [S0) 'z
} o @ R0 m @ @ O o »Q (] 2 0O C (@]
O O 3N L2 @R a . e 9] 1D F 4 e —
9 4 tS @ O B4 n n = 4 ey W@ o !
«© i [N 1 ol 8 . fe M Q o Vi ~ 00O O
(@) (SRR e Gt 0 o ()] o oow o O > . T Gy
o o @ - D] —~ = B D (© = [& [oto et o S
T 0 4o 5 8 cowE %] fd W o e (U & C (]
- 33 0 a2) e 4 [© ~— 3D e T3 o 42 S. G e O S
o Ll LI W ol) L« oo -~ T £ ~ & (9] +
O v~ O T3 et U D i T S w B oL <
1 0 ® a4 G O D> - (= [l 0 i .o O Q@ o
[} (= <. Kl ool) [eI =] Gu @ 2w N3 O O o
£ o 4+ O =1 O D O e . O Q0 [SRS ! 0 2 e
) O o O S, £ s 0L ~ * Q [EN IR © ISR} Gy a
4 o} O jolFas TN OO ST G ()] - O SN 0 et el e
ot [43] Qo4 [N S Kl =4 (GRS ~lom O (SRS I) O
« =) 4 Q o 72] o < 3D 3D <y e = o 3
[S « ™ O > n oo 3 4 [@JR0] o9 1y} Q<O
et e O 4 o ord eI G T3 © s W el -~ &L =2
S < L] C FRRENS] «r o 4 [l o [P RS = e o o3 o @ U G e}
O r v ¥ Q i AN - > O [LWERE NS BN G [] o G 4 v O O <
= © < ([L ¢ ~ (0 £ oo S o Gt . @

Fe] 1 Lo 9 - > [[a® € oD Gu O O [O RN elE i) (9]
O ® 3 w o Gt T Q O O W — O . O © S O e ot
IS b (a7 (4] 73] [OISS] O L @ — i jan) 33 e 3D D ©
O vl o 8\ = @ T . 0 m [O RN B o [PR S, =T Sa S o & & &
G © «© ‘ol © 2 %} € et =z 1 8 (@) W Vol ol el (&}

[ONNS} [h] o] £ (T KI5 [J) [Eh (@) = W e & QT 4 40 W (&
e e £] (o 42 et O L 9] 3) B B @ [o 0L «

4 D s 4] oo} o0 C " o (43 Jws [} 0 Q (O e T3 e @
%3} £, [O Q “ < [a=tnm (] vd 0O o 4D 1Y G %3]
4 43) > (R ~ J = = o (o] ¥ o
[¢ I sl o §3 L S o o O & © (W@ 4 Z 0 QP @ =
oerd Q@ (e, [03] © Gt g — =4 L3 L2 Ko (@] 3 ¢ < 4]
[o < S [T o « jelie) O d D 1

o @ O Gy © e} o O s oo .
oL i o n s, > £on | (% D G (2] P ©
— + 0 [SnE 2 nyown > > O ~
o k©) = 3 w2 @ o) ¢ wd @ O = (@]
Ly — | & 0N ! 43 © <
)] ()] O SN E [~—t V) o
o e 17} 0 A o N W & > . .
) G) et [SN] & EX (] C -~ (e
> 0 BN e [> I
. . . S. B £ E [ON] - . @
40 0 © 2 O N v e
(-) i 0 S O N > O
12 g B4 O G =N =t >0

-52-

. o 179] LS

kol i [
S. A et .
G on @ oom
[O2N) > £
(I e} @ (3 G ordd
& O — S0 Gy
el [L ay 4y
~ QD [} (@7 =
S W o wm = =N U]
.o 52 @ o ey C e s € S ©
o QP [a
) Fom O > N
(S I B 6] o (] [N S
© O G [SarEs| = £ b 3D B
. O 43 20 W +3 () e
Ko B¢} a Q@ Lrd G fx]
O Jesed S.o> . SofctiNe. -
70 I S O O 1 47 b)
o G &) -1 3 O
— n [Gy K © w
S] e 72 < 0 W
O Pl oS 0. a3 .
™l N Q L O >0 .
] o [GIENE S o e L. a3 X1 =
O QL Lo See B AV S &=
L O S O« « g +2 ™~
B) 4} &3] o 4D €3] o
e 20 78] = =) @ s o
Y L < O <L Ly B <1 N
— e e — . (a4 3 75} ™ S 3
Lo @© o, ol et [Bl o (e8] J]
QO 3 -~ (] [a™ 0 s S
S 50 W - ~ (DO 8]
[I S g (S 7] O o — 01 O 1
@ 5 O e . [Q) = Q
3 > — (8] Fd - [i el (]
v O = = 0] = Y o]
©] & T . W n QT b4 2l €8
Gq @ 2 — ko RO Vi jn BN S) sl] CF sl 1%}
~ @ O [[a® O > W o
4 S Gv Q < O B - | al J B L s, ecd
1 Q . © G %P)] I3 i ~
W G) Sa 4 | o Moo [£a} . b]
o) W > (@ o0 5] 4 W W o= ey =1
Vil s=BE ol @) © w w @ 28 S 1 B o |
@ o ~ O 9] = = . O i Lx, S8} >
O & S 144] o ko [o 1 =
v — Q@ (a™ (=9l /D] @ . OO =/ [[y e
- T > MO 5 O b © o e . DI PR N @ -
© O LR Ro] ot .. w1 © 1] O 0 > e © 42
© O 0 © 2N 2 < v e e v e 2 0L O W@
S 2 T T Qe < (0P i, < oo- 8t = e 8 i [=1 0
1 @ LOF 2 oL o P - i - O T A S . f—t ——
& sl o QRS S BN e I Sie| © e S « Q- Q 51 £~ o
4 3 2l e e T3 W G 42 O . 42 1] 19 1] ! baalecdl |
@ (= o I < g o o e U oo J Q) B
Gy U >4 O G G (T D @ O [7oRes! O ot ~[] = = e e B0 o=
o e 1 O S IS I S S G B o B ¢} [e 9] O 30 € [aBIR /3R a5
[=] w = bt S N R I 5
= w LoD 3 i CBown [[} O = —
. . . ») (D 4 12 4 (6 ol ooy s O]
= | ™ (3] } W o~ < © Ll O (@) @} i
A [al > [J 4 (G 03 Q (D [4¥]
[o) el (e, [~ o = ot FRE RN £3] £
£1 (&) o O & [30 wl Y @ ¥ o)
3 © LRy = Ta 3¢ b — (o) =
>4 £ R eed €3] S0}
£3] @ [} = O L3 L1] G £
P 4 (@] ko] e fedo3n £ (]
o ot LN = — L S
g} [r, o G- s ~ i ¢- ¢ £

~53-

Ba

-

lx}.’L

ARY, M

LTB

7} LD e . - 0]
O QOO n o
= i (&) W
n 0oL = r—
Gy oD Q
(6] Q @
. 0§ ~ g
Vi (IR Eet
[¢¥) re O 5
L 2 Q4 ! O
3 — S (6 42
EEs Q o Q i
I £ Ga 0
o [0 4)) 1]
G w0 c w
4 + jo
2 L O V]
(o} SRR I /9] 60 = o
7] 1%} U] © = D
jo BN ol o 4 @] o]
) O ot o £ O]
. . Qoed D W o O
o o £ 0¥ W © —
S ort . MO W 42 [$4] O
Ko et O £ & O = 3 S
O Gy S O @] o (o))
— O T s Q kel
.. v G Q@ O = S
o ~ O [V iy - —i W
o4 w o w4 O M [&8)] o]]
L0 > > o b o B
78] QO 2 «—) — e
6} =4 [ST B < S
o -] (] o jon
- . 4 0T AW () - O
0 = . e I« [sslic e I GRENR] £8} B~ w >
b4 @) {11 oo 0, © =t oo
- -4 S = o & -~ et n
o B 1 & omwT O > - w
& [a W £ ®» O [olE WS} « U2 42
€34 [0% @ O T 98] (&) D
& e b 0 i vl 8] 78] [
= O o (&) O > D o~ - - -~ =
) & [x1 b —~ < Oehey O N o ke
(@ G B (= O © SO S oS . @
= 1= § [o f e T sl) © < o
[11 1 3 = w o [Sa= [ela} 1 S ~ O
=) U2 5] <t 3] < U G o~ O fo 0 o S .
4] < - koo o < L)] 75 erd Bt o -~ F o, B4
o (e «© <l &3} @ T 2 i) @ =1 o
> L3 b O ol n e ™ OH O W S. o B e ey
(&) Lx] i 791 o —~ £ oo e S. S 5o [salE] £ o
ko . V2 am (o=} o >3 [augre] 3 T i) <7 02
[} = 4] £t =l v > o - O 7w} ¢ O s £ b
o <on - Q +- (@] £ 0 O Bl v G 3« O 0 [+ = (73] =
Gt e (¥ i t> FO NS o @ (@) O e fr.
w4 o I = . = el (@3 3o S @ «© O [oY) [e o] -~
S =5 U7 [z, £ O &= C V] [¢5] O 2 T L S (@0 (2] «x e (]
(U] =2 b, M o [N] o SO O ER RN e a8 -~ 1 O
o et T [a Wy o o 3D o @ [&] = (0 (4
- KB D) I) Q¥ Re) ~5. 0O O o I a0} [(es fx] 4 3 [a®}
] . © 0,1 3 [ES E C O Q20 T [A [o IS [jon)
fol 1 (@) oL L swliie" (0] O . —t (5 L) «x [(48]
-~ NSNS I (@] i [SIEQV} O, 0 Q0 2] R —
= @ n = s B C £, £ n i lsw ord b 0}
o . £ O U B BOEA e = o @ (O] O S (2 &
© ¢ Kot S o =1) (@} 1] G O Py O O © =2 o)
- e)] Q.2 > [G2RTS] @ B) O O
0 o ol8} — U e e b fod w jelgeN L . .
o4 et Q O O s .o (LT3
L G S (SR niysofuy SRy) o ®© O 35 0
£ S~ [B ~ B e N O bR [ry & U P

o
O
ord

=3
1

O

O
(&

e
vl

o

[,

U3
©

Gy

59]
)
1
23
3
€8]
9]

>
K]
ot

e
L3
©

v
)

40
&2

-
C

Q
W
o
43
W

(s |

40

o

s

©
N

4]
o]
e
r—t

%3]
<
O
Q

L2
o

W
(@]

Lo14)
«

et}
<
ot
&}
]

(eh)

i

3ot

3]

o

Gt

(W)
35

vl
[45]

NOS V2 USABILITY

LIBEDIT ~ ENHANCEMENTS

LIBEDIT ENHANCEMENTS

4+ THERE HAVE BEEN SUSSTANTIAL CHANGES AND ADDITIONS TO BOTH
THE COMMAND PARAMETERS AND THE DIRECTIVES (sS== BELOW'

THE capasTLITY OF InvoxIng LIBGEN rrom LIBEDIT Has s=EN
DEVELOPED AS PART OF THE GLOBAL LIBRARY BET FEATURE.

LIBEDIT wILL NOW AUTDOMATICALLY INSERT any "nEw" (A nNAMED
RECORD PRESENT on FrLe "LG0OY, WHICH IS NDT PRESENT ON FILE
YOLD") JusST BEFORE THE END-OF-FILE ON FILE "NEW".

¥ LIBEDIT DIRECTIVE PRDOCESSING HAS BEEN CHANGED DURING
INTERACTIVE SESSIONS. Mow, IF & DIRECTIVE ERROR IS
peTsEcTeEn, LIBEDIT wILL PROMPT Y0OUW TO RE~ENTER THE
DIRECTIVE (INSTEAD OF ABDORTING).

ParamMeTER CHANGES

1. L THE QUTPUT FILE NAME PARAMETER HAS BEEN
cHANGED From"LO" To "L

2. LO THE LIST OPTION PARAMETER HAS BEEN CHANGED
FrOM "L" To "LOY. ALS0O:) THERE ARE NDW FIVE
SEPARATE LIST OPTIONS:

LO=E - LIST ERRORS

LO=M —- LIST MODIFICATIONS

LO=C - LIST DIRECTIVES

LO=N - FULL LIST OF RECDRDS WRITEN TO FILE
n NEw i

LO=F - FULL LIST

THE NEW DEFAULTS ARE=E: LO=EM, FOR INTERACTIVE
ouTPuT, AanND LO=F FOR NON-INTERACTIVE OUTPUT

FARAMETER ADDITTIONS
L. NA No ABORT ON DIRECTIVE ERRORS, SAME AS THE OLD

D" paraMTER ("D" HAS BEEN RETAINED FOR
COMPATIBILITY).

2. NI NO NEW RECORD WILL BE INSERTED AT THE END OF
FILE.

3. NR Fries "OLD"™ aAanp "NEW" WILL NOT BE REWOUND
AFTER PROCESSING. SaME AS THE oD "R"
PARAMETER.

4, BRIEF WHxen useED unpeEr IAF, THE PRINTING OF TITLE

LINES ON QUTPUT WILL BE SUPPRESSED.

5 C AFTER PROCES3ING HAS BEEN COMPLETED, FILE
“NEW" wWrLL BE COPIED oveErR FILE "OLD".

_57...

New DzreECcTZVES

1. LIST, FiN,

2. NEW, FN
3. OLD, FN
4. NOINS
3. MOREW
&. VFYLIB
7. DEBUG

GLOBAL LIBRA

1. U ParameT

2. NX Parame

3. LIBGEN, FN

EMCNF CHANGES THE DUTPUT LIST FILE To "FN",
AND THE LIST oPTIONS To E,.M:C, N, or F.

SETs FrLe "FN" AS THE NEW FILE.

BeTts FILE "FN" AS THE OLD FILE

NO NEW RECORDS WILL BE INSERTED AT THE END OF
FILE.

Frues "NEW" ano "OLD" WILL NOT 2E REWOUND

AFTER PROCESSING.

AFTER PROCESSING IS COMPLETE: FILE "NEW" wWTLL
BE VERIFIED AGAINST FILE "“OLD".

THIS DIRECTIVE CAUSES ERRORS TO BE REPORTED,

BUT IGNORED. PROCESSING CONTINUES NORMALLY
WITH THE NEXNT DIRECTIVE. IT Is EQUIVALENT TO
THE NA COMMAND PARAMETER. THE DIRECTIVE IS

AUTOMATICALLY BSELECTED WHEN OQUTPUT IS TO A
TERMINAL,

RY BET CuhanceEs

ER THIS CONTROL CARD PARAMETER MWILL CAUSE
LIBEDIT To caLL LIBGEN, WHEN NORMAL
PROCESSING IS COMPLETE. LIBGEN wzrLtL
PLACE THE ULTIMATE USER LIBRARY ON FILE
i NEW" .

TER THE normaL LIBGEN PARAMETER WILL BE
ACCEPTED 8w LIBEDIT, AND WILL BE PASSED
To LIBGEN.

THIS NEW DIRECTIVE WILL carL LIBGEN TO

CREATE A USER LIBRARY ON FILE "FN©",
IT IS EQUIVALENT TO THE "“U" pPARAMETER.

-58-

SORT 5

-59~

A CLIMPSE QOF SORT 5 DESIGN AND INTERNALS
I. 3rief Introduction Lo 3orf 2

Sort/Merge 5 is a new product belng released for the first
time under the NOS/BE 1 onerating system at level 552» and un-
dar the NOS 2,0 operating systems This paper will refer to it
as Sort 5.

Sort 5 contains all the features of Sort/Merge 4 with some
excentions. Sort 5 does not support Exit 6 owncodes does not
takae checkpoint dumoss and does not use tape scratch Ffiless
Sort 5 does have some new features as described balow,

TT1. New Eeatures

) Sort 5 c¢an be caltlad with a command powerful enough for
99% of tvyoical sortse. The simplest formn Is "SORT3., A 8" whicgh
will sort file A using the entire record as the key and out it
on file 3, The example "SORTS5, A A 11,.,15" will reorder File
A according to charactars 11 through 15 Multiple keys and a
variety of key types can aliso be specifieds as can other
options, A directive file can also be specifiad,

21 Sort 5 can be called with an interactive dialogue, Novice
users need only remnembher "SORT5.DIALOG=YES™ to invoke an in-
taractive dialog that will eventually sort their file, This
dialog offers a HELP facility.

3) Sort 5 can "suym"™ records. This is the ability to <combine
tWwo or more records with eaual key values into 2 single re-
cordy whila summing values from a specified field and leaving
the sum in the new record. For examples, the headquarters of a
chain of stores could have one file per stores each containing
records with a product identifier and the amount ordered, If
alt files are fed into Sort 5, summing will generate a flile
with only one racord per product and having the total amount
of that oroduct to be ordered for all storess

4)Y Sort 5 can sort signed integers written according to the
FORTRAN "I FORMAT, such as ™ 123" or " =456", This cannot
ha done by defining a special collating seqguence because it
fFails for negative numbers.

5% Sort 5 suyppresses yoluminous dayvfile messages, This is

particularty useful for sites with limits on the size of day-
filess, Fven when repeatedly called from a user program Sort 5

-60-

does not issue dayfile messages; it instead passes various in-
formation Dback to the caller thereby giving it the option of
Ariting some or al!ll of the information to the dayfile, When
called from a command Sort 5 finishes with a dayfila 1ine
saying "n RECORDS SORTED™.

ITI. Qezsian Goals

Sort 5 is designed to be reliables usables maintainabile
and to parform well,

Its reliability is assured by several factors, The main
factor is that Sort 5 was thoroughly analyzed and designed in
a structured mannar bhefore any code was written, Another §me
vortant factor is that it was written in a high-level! language

exceot for machine~dependent functions or intarfaces to the

operating system. Al cempiex data structures are in the
high-levai languaqge and only neacassary values are given to
COMPASS subroutines, One advantage of designing the oroduct

haefore it was coded was that memory is managed better: as a
resulty much more c¢code is devoted to the preparation of the
sort phases. Emnphasis was placed on easy-to-understand code
even if it was a littlie more wordy., The final factor in Sort
5's reliability is thnat it was very thoroughly tested,

Sort 5 is designed to be usabies. It can be called with a
conmand opower fuyul enough for 967 of tyoical sorts. Novice or
forgetful users can invoke the interactive dialog to heio thenm
sort files, Sort 5 can aiso he called from programs using a
set of procedures whos2 names and parameters closely follow
the format of the command., For simplicitys Sort 5 deals oniy
with the standard character sety aithough many collating
seguences are available,

Sort 5 is also usable in that convarsion from Sort & is
2435V, The most difficuit part of conversion would have been
convarting the calls to Sort 4-FORTRAN interface routine to
the nes Sort 5 interface, Fortunately Sort 5 completely sup-
norts the old interface, We aiso have the policy ¢that if
someaone finds an incompatibility at execution time bhetueen
Sort 4's interface and Sort 5's interface then we will change
Sort 5 rather than changing Sort 4 or the reference manualse.
Tt is true that Sort 5 does not support Sort 4's directive
format, but most of such conversion involves deleting the di-
rective file rather than creating a new directive flfe,

]

Sort 5 is designed to be more easily maintained. Its
structurad rdesign makes it much easier for maintenance oro-
qrammers to understand its overall organization and logics
Its structured implementation makes it much easier to under-
stand and possibiy change data structures and interfaces be-
tween modules., Use of a high=jevel language makes it much
sasier to understand the detaiied logic and wmeaning of data
itemss and eliminates most errors in picking wup data or
calling other modules, Sort 5 can aliso be built as a debug
version, This debug version has much code of the form:

1F condition—-that-should-not-occur THEN abort-with-messages
ors IF tist—=debug=-messages THEN print-useful-items,
or simplys print—-useful-items

The debuq version also writes a trace file with useful infor-
mation including the common form of the specifications and a
fist of generated code, Tocols are also kept on the PL that
list comdecks and build and update working files,

Sort 5 is designed for better performance, One far=-
reaching technique is to compilte all code that will do the ac-
tyal sortings, This means that execution will be fasters, mors
space will be available for sorting and special cases can be
optinized without imoacting the general case, Special case
code is generated for fixed=length recordss summings RETAIN
options combinations of owncode, and fast I/0 for 87=C, RT=F
or 3T7=1s RT=W records, Sort 5 manages its m2mory so it has a
tot of room for intelligent code before the actual sorting and
marging phas2s. The compiled code 2nsuras that the actual
sorting and merging onases have enough inteliligence for sach
carticular sort while using a3 minimum amount of memory for
codea, Sort 5 reformats each user record into 3 more efficient
fForm by keeping the minimum number of bits of miscellaneous
information followed by key fields in a form ready for a gquick
compares followed by the non~key fields of the recerds Sort 5
also has an intelligent merge phase to heijp it choose the
fastest sequence of intermediate mergess considering avaiiable
memorys the lengths of the intermediate fliless and where the
intermedijate files raeside,

=G

IVe Implemeniation gf Sort 3

Sort 5 has been imolemented to achisve the above design
g0als Most aspects of implementation closely follow tha design
T

guidelines. I will discuss some aspacts of implementation not
nbvicus from the above design goalss

Sort 5 bhas a number of phasas:? Parameter Gathering,
Paraneter Analysiss Code Generations and Execution. The
Parameter Gathering phase gathers varameters according to the
ma2thod used to call Sort 5 = commandy directive file, interac-
tive dialogue or orocedure c¢alls, The Parameter Anailysis
ohas2 takes these raw oparameterss analyses thems issues
diagnostics and saves the parameters in a common format for
the next ohase. The Code Generation phase generates c¢ode from
the digasted parameters,; and the Exscution phase exegutas this
code, Long sorts then have a3 Merge Design ohases anstner Code
Ganeration Phase and anothar Execution phasss

Figure 1 shows a mao of memory during the wvarious ohases

5f a sort. Almost all of the code is in capsules that are
foaded into memory only wWhen needsad, The main capsules
SEMAIN, is foaged into memory either by the SORTS command

overlay or by the SMS5END or SMEND procedure calil. SIMAIN
ensures that permanent CMM blocks such as the CRM groupn
directory or FITs are in low memory. Capsules are then load~
ad, executed and wunloaded to gather and analyze parameters.
Finally the sort phase controlier is loaded and takes over.
This controllar directs gena2ration of sort codes At this
pnint a fraction of a sacond has been soent, and the actuysa!l
sort exscution is about to begina Memory space is very
valuable during execution so only the controfiers and thes gen=-
erated code are kept in memory. The sort execution phase uses
2!l available memory and a lot of the time to get user records
and sort them onto strings of records on files. The actual
sort process is explained b2lows The average string length is
about twice the size of the working stocrage areas For short
sorts (files that fit in the working storage area) the sort is
now comnlete, For long sorts the Marge Design phase is load=-
ed, axecuted and unloaded to tell the Execution phase how to
merge the internal files, Code is generated and exscuted %o
produce Just a few internal files, Then the final code is
g2nerated and executed to merge these internal files and
revert the internal records back to their originat formats

il

SORTS (0,0)

Includes CcMM,

!SOR’TS Group Directory

Overlay
FDL, CTL$

RM

CRM Group Dirtcforgw

MAIN Main Lontroller 7
FIT space V4
SPEC
Specifications SRT PH Sort Phase Comtrolier
10k
STREC 17 A e
OPEN
A= STRTAL IMmTEL
v
% Intermediate- Mecge
>SPC Table
/ CODE C(olg
GC* % Genergted Code MGDSN Gener-
ate
IOK_SPCC}g{Cq‘“ms/ Code
% Mecge | CODE
// Desian
/ WwshA Cerers
ated
/ Cede
Workin y e
/ ° V | WS A e
i / GNSRT sm.ge//‘ e
| = .
1 Generate: Sort Codg|Area | 7 Working| Final
: Meree
3ok L GTCSP I GINPR Sterage
/ Area
GNIMG
Get |Get / GNGRY Gemereitl
Conirol [Inter- Generate: L':.';{.w
acdive / Merae {
State- |Para- 4 Get Record sl
ment| meters / 7 7.
Pare- 7 g from User //. |
meterg A // |
/.« - A !
o 2
v |
b iz |
4ok — //

GNPRUY

Generate:
Put Record

to User

GNINT

G

Figure

-64-

1

A\

7%
7

The Sort Execution Phase manages the resouyrces of fast-
hut=1imited central memorv and siow-but-voluminous disk soace
so as to sort all records given its. Oniy central memory is
suyitead for shuffiing records around to actually sort them -
any technique to use disk space in a simitar manner wouild in-
voive af least one disk access per raecord sorteds The disk
spac2 is used to save whole strings of already-sorted recordse
Central memory is used to either produce these stringss or to
read sevaral strings at once and merge them to a singtle fong
string, The former oprocess is known internally as sortings
and the }latter as merging. Merging Is further broken down as
intermediats merizs where strinas are merged to fForm fewer
strinagss or the final merga where strings are merged and re-
cords given to the user's file and/or ouwncode,

The sort techniaue is determined by the fact that strings
will ha merged and that elapsed time is roughiy proportional
to the amount of I/0 done, If the strings for a sort {befora
any intarmediate or final merging) are twice as Jong as anoth=
ar sort with the sama input then there will be half as many
stringse. The maximum number of strings that c¢an D2
efficiently merged at one time is about 15, due to buffer
sizes and operating system performance., Suppose a sort has 30
units of records that are internally sorted one unit oper
string. This oproduces 30 strings which cannot be merged di-
rectiy to output. 0One or more intermediate merges must be
4ones so there will he 90 units of I/0 volume, 0On the other
hand, if these 30 units of records were originally sorted tuo
ynits per string then there would be 15 stringse. These 15
strings could then be mergaed for final output with onily 30
ynits of I/0 volume, Thuss initially having two uniis oer
string results in a tremendous savings in performance in this
caAs e, For shorter sorts it may not maxe 3 differenca, A fije
size of 5 units would have 6 units of I/0 volume regardiess of
initial string size,

Since the initial string size Is so critically important
for the performance of large sorts the sort technique must
produce strings as long as possiblie. Most sort techniques can
sort no more reacords than can fit in central memory. The
axception is a reolacement sorte. As soon as the smallest re-
cord is determined It is written to a file and is replaced by
a new records and the process repeated, Fach new record may
or may not be ahle to fit on the currant strings Eventualtly
central memory will fill uop with records that cannot Ffit on
the current strings and a new string will have to be started.

For randomly ordered input records a replacement sort will
oroduce strinas twice as Dbig as central memorys The worst
case is reyerse ordered input recordss producing strings Jjust
as big as central MEMOr Ye The best case is inout records

-65-

ordared well enough that all aut-of~order racords witl fit in
central memorys oroducing one giant stringe.

Sevaral reptacement sorts are possible. Sort 5 uses a
variant of a tournament replacement sort. Figure 2 shows 12
racords competing in a tournament, At this point the tourna-
ment resembles a tennis tournament having players a through k
with a being the bests, Fach pair of players/records conpete
and each winner goes on to play other winners, until the
overall winner is deterninead,

L g 1--
}=—l 4 J=--
[d 1-- \
}=-L b I--
[b I=-- / \
}=={ b J== \
L j i=-- \
}=-L a1 --
L h 1=-- / \
}--I a2]-- / \
{ a2 31-- \ / A\
}=={ a]=-- \
L i J=-- i 3\
}=={ ¢ 1=- }=={ a 1
L ¢ 1-- /
/
L 1 1=- /
}e= £ J=- /
L f J=- \ 7
Fruml @ e e
{ & 3= /
}==[&]=-
[x J=-
Figure 2

-66-

dhen
lavyel o2
save time we yse
most of 2ach
This tournament
Area is shown

the winning racord

indexes to records
record
is shown
in Figure

3be For

n¥ the record is

[gf1] J=-
F=-Ld4121 31—
[d(2)1-- \
F==Eh{ 3] J==
IhE3) I== / \
F==L513) 3=~ \
Lilg) J== A

[hi{5) == /
}==Talb)l=- /
[a(s))= \ /
}==Tal(6)]--
fi(7)1=-- /
}==[c{8)1~=-
[c(8)]-=

L1H{g9) 1=~
}--1Ff(10) 1~
[fF(10)]- \

}==le(11) Jmmmmm

felll)]- /
}==Le(l1l1)]~
tkliZ)3=

Figure 33

record
record
record
record
record

of
of
of
of
of

rest
rest
rest
rest
rest

s % “s so es

T QO

record
record

of
of

rest
rest

[

R
N e AN N

s o8 B

x

Figure 3b

¢cf a pair
do not want to actuaily move the entire record,

in a separate
in Figure 3a and the
exampies
nanent means this has a comparison value of Yh?"
in siot 5 of the RSA.

to the next

To
in the tournament and keepn
record storage areas RSA.
Record Storage
"h{5)}" in the tour-
and the rest

advyances

}-={a(6)]

- — s o =

Let us try to reorganize the tourpament to save space, It
is cleariy wasteful to us2 more than one box for each winner.
If we keap track of only the last winners?! boxes we get figure
G, This tournament may {ook more confusing than Figure 3a but
it contains the same information while using less space.,

{g{l)]--
}-~[d{2)}]~—
———————— \
}=={b{3)]==-
-------- / \
}om e \
(jla)l=- \
[
[hi5)]-=- / \
Fomm————— / A\
———————— \ / A\
}ormm———————— \
Li(7)Y1~-- / A\
}=={c(8}]—= }=-=-{al5})1]
———————— /
/
[1(G3)]=- /
}--LF{10) 1~ /
v o o e \ /
}-={e{ll))eme—mm e
}
(k(12)1~-

Figqure 4

-68 -

Now each box holds the loser of a competition, This is
its only real sianificance. It does not matter now whether
the loser came from thes upoer branch or the lower branch, So
lat us put each box in the middie of each pair., This gives
Figure 5 which is tha final form of the tournament., The boxes
are nymbered in this figure the same way Sort 5 numhers them,
W2 will discuss the significance of this numbering systen
later.,

113011}] Jpre=mseawsmaws
—————————— \
5:04(2)] J
—————————— / \
16:0j(4)] }mememmmemme \
—————————— A
23LBL3)1] Jo——ewwe
---------- / \
CEE R b I I / \
---------- \ / A\
4:0c(8)] Fomm————— \
---------- / A
g:lil7)] Yo 1:fel{11)] }=-> 0:Tals6)]
---------- /
/
---------- /
7301(9)] }o——mmmec e /
—————————— \ /
35LT1101] Jr——remesaecmmmms:
~~~~~~~~~~ /
6:{k{(l2)]1}-——=rmm
Figure 5

The tournament shows record a{6) wone So wWe wWrite record
a (from slot 6 in the RSA) to a string file. We then get a
reolacenant record from the user and put it in siot 6 of the
RSA,., Suppose this record is m{é)s We know the next winner is
the replacement record or one of the records that lost to the
curraent record: ml{b6)s h{5Yy cl8)s bB{(3) or e{ll), We also want
tn out in the box of th2 naxt winner an appropnriate foser so
the tournament is ready for a subsaguent winner, We do this
hy holtding the replacement records, mib6)s in our hand and
comnparing it with the first level losers hi5)s H{5) wins so
Wwe {2ave m(5) in box 9 and hold h{5)e We next compare hi5)
3azinst the second=level losers c{8)., C{(8) wins so we jeave
h{3) in box 4 and hold c(8). We next compare c{8) against the
third=level tasers, B{3)., B(3) wins so we leave c{(8) in box 4%
and hoild b(3)s We next compare b(3) against the fourth-level

6=



insery, 2{11l), This time the winner is b{3) so we leave 2{11)
in box 1 and continue to hold b{3)., 4e haye compared all
approoriate reacordss so the winner is b{3) and the structure
of the tournament is the same as we started, Figure & shows
how =2ach record has been snuffled after this tast step,

11:0g(1)] }emmmmmmm———e
““““““ \
5:04(2}1] e
“““““““ / A\
1030 j(4)] Jommmmmmcmeee \
""""" \
2:[c{8)] }-mewo——
---------- / \
9:ilm{a)] }o—emmmm e ; \
““““““ A\ 7/ \
4:In{5)1] }——————- A
_____ ———— / \
83li{7)] }emmmmmm————— 1:Cef{l1)] 3==> 0:3Ib{3)13
—————————— /
/
———————— /
7:041(3)] }mmm—mmmmm = /
---------- A\ /
3:(f{10)1 1}- ——
---------- /
Hilk{l2)]}mmmem e
Figure 6

Suppose the next reolacement record is 2a{3). This record
will never be able to Fit on the currant string because it
should g0 before a records bs that has already been written
DUt e It is marked as a "next=string™ record. It competes
normally with other records except that a "next-string® record
atways loses to a normal "current-string® records Eventuaily
the tournament witll fill up with "next-string™ records and a
"next-string™ record will win the tournament., At that point
all the "naxt-string® records will be considered
“ourrent=string™ records and the orocess will continues

Eventually we will run out of replacement records. Then
w2 introduce "end=of-data™ recordss, These also competes with
any normal record ~inning over an "end=of=-cata™ record. The
process continues untiil an "end-of-data'" record wins thes tour-
nament, The sorting phase is then complete, It wiil have

produced one or more sorted stringss which wiil then be mearged
and eventually be given back to the user,

~70~



At this point you can see the fogic behind the numbers
assigned to each box by Sort 5, The sort process goes from a
hox at oane {aval to the box on the naxt level py dividing the
first box number by two., Also, the first-leve! box numbar can
be daterminad from the winning record number by the formula

<tournament length> = (<record number> + 1)/72

For example the box that a{é) originally competed against was
12 - (6 + 1)7/2 = 35 which is whera its replacement record will
start conpeting,

I wit! now talk about some other aspects of Sort 5
implementation,

Sort 5 is maintained on an UPDATE oprogram 1library. The
oroject Ffollowed specific naming and ordering conventions to
make it =masy to find their way around the Pl, Decks are
groupad into sections consisting of a comment decks one or
more normal dacks and an optional end-of=record deck. Tha
comment deck is Jjust a parenthesized name such as "{TEXT)*",
Two or more normal! decks are ordered alphabeticalilys as befits
E] sart product! The end-gof=record is alone in a deck named
"EWEORNY, The above description applies for comdeck<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>